Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 343: 123215, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38145635

RESUMO

The cooking fumes generated from thermal cooking oils contains various of hazardous components and shows deleterious health effects. The edible oil refining is designed to improve the oil quality and safety. While, there remains unknown about the connections between the characteristics and health risks of the cooking fumes and oils with different refining levels. In this study, the hazardous compounds, including aldehydes, ketones, polycyclic aromatic hydrocarbons (PAHs), and particulate matter (PM) in the fumes emitted from heated soybean oils with different refining levels were characterized, and their health risks were assessed. Results demonstrated that the concentration range of aldehydes and ketones (from 328.06 ± 24.64 to 796.52 ± 29.67 µg/m3), PAHs (from 4.39 ± 0.19 to 7.86 ± 0.51 µg/m3), and PM (from 0.36 ± 0.14 to 5.08 ± 0.15 mg/m3) varied among soybean oil with different refining levels, respectively. The neutralized oil showed the highest concentration of aldehydes and ketones, whereas the refined oil showed the lowest. The highest concentration levels of PAHs and PM were observed in fumes emitted from crude oil. A highly significant (p < 0.001) positive correlation between the acid value of cooking oil and the concentrations of PM was found, suggesting that removing free fatty acids is critical for mitigating PM concentration in cooking fumes. Additionally, the incremental lifetime cancer risk (ILCR) values of PAHs and aldehydes were 5.60 × 10-4 to 8.66 × 10-5 and 5.60 × 10-4 to 8.66 × 10-5, respectively, which were substantially higher than the acceptable levels (1.0 × 10-6) established by US EPA. The present study quantifies the impact of edible oil refining on hazardous compound emissions and provides a theoretical basis for controlling the health risks of cooking fumes via precise edible oil processing.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Óleo de Soja , Óleo de Soja/análise , Óleos de Plantas , Hidrocarbonetos Policíclicos Aromáticos/análise , Material Particulado , Gases/análise , Medição de Risco , Culinária/métodos , Aldeídos/análise , Cetonas/análise
2.
Foods ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36900555

RESUMO

Visible light has been widely studied for possible applications in food industry as being a kind of clean energy. Presently, the influences of illumination pretreatment on soybean oil quality followed by conventional activated clay bleaching, including the oil color, fatty acid composition, oxidation stability, and micronutrient content, were investigated. Results demonstrated that the illumination pretreatment increased the color differences between the non-illuminated and illuminated soybean oils, which indicated that the light exposure could improve the decoloring effects. The fatty acids composition and the peroxide value (POV) and oxidation stability index (OSI) of the soybean oils showed little changes during this process. Although the illumination pretreatment affected the content of lipid-soluble micronutrients, including phytosterols and tocopherols, no significant differences could be observed (p > 0.05). Moreover, it showed that the illumination pretreatment showed significant effects for decreasing the following activated clay bleaching temperature, indicating the energy saving potential of this novel soybean oil decoloring process. The present study might provide new insights for developing eco-friendly and efficient vegetable oil bleaching technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...